Overview

Advanced Scientific Concepts, Inc. (ASC) is a 3D camera & semiconductor company
- Founded in 1987
- Designs: Semiconductors + Lasers + Optics = 3D Flash LIDAR Camera™

- Multiple, broad patents granted, several more in process
- Stackpoole Consulting LLC working as ASC Business Development Representative

Technology Advantages
- Eye-safe lasers illuminate a unique 3D Focal Plane Array (16384 pixels)
- Real-time 3D images/streams without motion distortion
- Lightweight, non-mechanical camera (i.e. non-scanning)
- 3D zoom like ordinary 2D digital cameras
3D Imaging with Benefits

Streaming 3D images of vehicles, pedestrians, roads, markings, signs, works in bright sun, in absolute darkness or through obscuration (e.g. rain, smoke, snow and fog)

What is 3D Flash LIDAR and Why Does It Provide the Best 3D Depth Data, Accuracy & Compact Size?

Invisible, eye-safe laser pulse illumination (Class 1)

A very short pulse of laser light is reflected back to 3D camera. Range/Distance measured by “time-of-flight” creating accurate distance/depth map for all pixels individually.

3D Flash LIDAR is the best 3D Sensor choice for all vehicles
- 3D Point Cloud provides thousands of data points vs. MMW radar (16)
- Compact, rugged solid-state camera (no moving parts) vs. scanning ladar
- Use day or night, in fog or smoke; immune to bright sunlight & glare
- Fast capture time (<700ns) rendering the 3D image data immune to vibration or motion blurring
- Images more materials than radar (non-metal, concrete, etc.)
- Stereoscopic needs light and has severe limits
MM Wave Radar vs. ASC 3D Focal Plane Array

<table>
<thead>
<tr>
<th>Features</th>
<th>Millimeter Wave Radar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size/Weight</td>
<td>6 cm x 6 cm x 3 cm/170gm (10 oz)</td>
</tr>
<tr>
<td>Resolution (pixels)</td>
<td>1,024 – 16,384 (or larger)</td>
</tr>
<tr>
<td>Maximum Range</td>
<td>>150m</td>
</tr>
<tr>
<td>Accuracy</td>
<td>High (3 cm)</td>
</tr>
<tr>
<td>False Alarms</td>
<td>Low (Due to high resolution)</td>
</tr>
<tr>
<td>Operation in daylight/fog and smoke</td>
<td>Very Good (SULAR) Very Good</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>2 - 6 W</td>
</tr>
<tr>
<td>Information Provided</td>
<td>High (Depth Map & Intensity)</td>
</tr>
</tbody>
</table>

Imaging Through Obscuration
Intensity Map and 3D Point Clouds in Real-time
Original 3D Flash LIDAR IP

Chips (InGaAs and CMOS)
- Non-CCD/CMOS hybrid sensors

Lasers & Optics
- Diode or “pumped” depending on application

Software

3D Flash LIDAR Cameras
- Portable 3D FLC
- TigerEye 3D Camera
- TigerCub 3D Camera
- DragonEye 3D Space Camera for SpaceX’s Dragon Vehicle
- RexEye Deep Space 3D Camera (for OSIRIS-REx project)

SpaceX: DragonEye 3D Flash LIDAR
Successful Autonomous Rendezvous & Berthing with the ISS

Pictures used with permission from SpaceX & NASA
Brought to you by Stackpoole Consulting, LLC
DragonEye 3D Flash LIDAR On-Orbit Tests
STS-127 & STS-133 Successful DTOs

3D Flash LIDAR image (single frame) STS-133 approach to International Space Station using 45x45 degree FOV lens, from 1.5km to docking.

Material used by permission NASA and Space Exploration Corp.

Sample Raw Data: City Driving
One data set shown from 2 different angles; no visual 2D data

45° field of view, point cloud data; the right scene is exactly the same data as the left with different viewpoints; NOTE the lane markings in real-time

Left 'click' on left scene to start animation
Range & Intensity Data in Real Time

OSIRIS-REx *Bennu* Asteroid Sample-Return Mission

GoldenEye 3D Flash LIDAR to Drive GN&C
Sample Raw Data: City Driving
Range and intensity map only, no color coding for range

Animations created using SAIC's Urban Reality 3D Viewer
"Left click" on the scene to start animation.

9° field of view, raw point cloud data captured at 10 Hz rotated for visibility.

Data Fusion
3D Cloud Point Data Textured with 2D Data

NOTE: Scene "rotating" in order to show 3D on a 2D display.

1.1 km distance fused 2D images as 3D overlay.
Pixel Pitch 128x128: 8.6° vs. 45°

8.6° TigerEye
(At 17m, pixel pitch is ~2cm)

45° TigerEye
(At 17m, pixel pitch is ~10.4cm)

45° Combined Range & Intensity

Range & Intensity Map Combined
Single Laser Pulse, <10nS
Data Fusion

These samples are "rotated" to show 3D perspective on a 2D display

Multiple 2D+3D cameras would allow a full 360° experience
- Analytics & metrics, measuring ball and player speed; distances, statistics, etc.
- Viewing from various perspectives

Airborne Applications

- Mapping
- Wire Detection
- Landing Zone Evaluation
- Autonomous Refueling
- Collision Avoidance
- Situational Awareness
- Brownout Landing
- Surveillance
- Countermeasures
Aerial Mapping

http://www.youtube.com/watch?v=vJ-rQJqOM

ASC’s Value Added Reseller (VAR), Ball Aerospace, uses 3D Flash LIDAR in their Total Sight™ streaming aerial mapping system, fusing 3D and 2D data and geo-referencing in real-time.

Landing Zone Evaluation

- Demonstrated 3D Flash LIDAR's ability to create 3D hazard maps in real time
- 3D map of Yuma LZ is stitched together for a large area map
- Individual frame will provide 200ft x 500ft landing lane image with 1mRad resolution
Airborne Refueling

- High performance air vehicle Probe & Drogue Refueling (PDR)
 - Simple, flexible implementation,
 - Relies on receiver to make connection
 - Multiple air vehicles can be refueled simultaneously
 - NATO and US Navy standard

- ASC’s 3D Flash LIDAR
 - Accurate real-time 3D measurement
 - Able to visualize through clouds, day, night
 - Eye-safe
 - Not possible to “jam”
 - 5cm – 1km
 - Autonomous AAR
 - Real-time
 - Trajectory
 - Bearing
 - 6 DOF

Dust Penetration Testing

- Dust Penetration Testing at Yuma Proving Grounds
3D Flash LIDAR Brownout Results

Wire Detection Close Range
3D Flash LIDAR through Water
“Seeing” though water

Panel
Out of Water

Note: Rippled bottom (and distortion) resulting from lack of calibration